Structure and dynamic basis for protein function
Dynamics represent the fourth dimension linking protein structures to mechanisms. Proteins have parts that gate, bend, twist or catalyze a given reaction. These dynamic transitions take place on time scales ranging from picosecond side chain rotameric equilibria to millisecond rearrangements in cooperative protein complexes. Despite spectacular recent progress, the study of dynamics of membrane proteins and macromolecular complexes remain an immature area of research.
The main experimental focus in the Mchaourab laboratory is to understand the dynamic dimension of protein structures. The lab has developed and applied spectroscopic approaches based on paramagnetic or fluorescent reporter groups to characterize the collective functional or regulatory motion of protein secondary structures and domains. Highlights of its work include describing protein motion that coupling ATP hydrolysis to substrate translocation by transporters, hinge motion in T4 Lysozme, and single molecule detection of domain movement.
The Mchaourab lab uses spin labeling with EPR spectroscopy as its major experimental tool to describe protein dynamics in energy transduction systems for signaling, energy conversion systems for transport, and stability sensors for conformational editing. The lab seeks to define the energy transduction events converting various stimuli into protein motion and to determine the structure of end point states. Spin labeling also allows analysis of well-defined biochemical intermediates in native-like environments without the conformational selectivity imposed by lattice forces.
Source: https://medschool.vanderbilt.edu/mpb/person/hassane-s-mchaourab-phd