Physiology & Biophysics

Xin Qi, PhD
Associate Professor
PhD, Hokkaido University, Japan
Postdoctoral Training, Stanford University

School of Medicine E516
10900 Euclid Ave
Cleveland , OH 44106-4970
Phone: 216-368-4459
Fax: 216-368-5586

Research Interests

Mitochondrial dysfunction in disease

Mitochondria are critical organelles for cellular function through regulation of energy metabolism, ATP generation, and calcium handling. A decline in mitochondrial activity has become a hallmark of a wide range of human diseases and ageing. My laboratory aims to understand how mitochondrial dysfunction contributes to neurodegeneration in diseases. 

By combining general cultured cells, animal models and patient neurons differentiated from patient induced pluripotent stem cells (iPS cells), our research focuses include:

Mitochondrial quality control under normal and stressed conditions

Figure legend

Specific Projects
  1. Identifying the role of mitochondrial dynamics in neurodegeneration

    Mitochondria are highly dynamic organelles that constantly fuse and divide, forming either interconnected mitochondrial networks or separated fragmented mitochondria. These processes are believed to enable an effective adaptation of the mitochondrial compartment to the metabolic needs of the cell. We are studying the roles of mitochondrial dynamics-related proteins in mitochondrial and neuronal function under physiological and pathological conditions. Especially, by utilizing a set of fission peptide inhibitors which we recently developed, we are determining whether manipulation of mitochondrial dynamics could provide therapeutics for treatment of neurodegenerative diseases.

  2. Understanding mitochondrial quality control in normal and diseased states 

    Mitochondrial quality control includes mitochondria-associated protein degradation, mitochondrial unfolded protein response and mitochondria-related autophagy (mitophagy). These events are to repair damaged mitochondrial proteins, to remove/degrade the irreversibly damaged mitochondria. Therefore, they are important processes to maintain normal mitochondrial functions. Using proteomics approach, we are identifying factors which participate in these events, and aim to understand how protein homeostasis of mitochondria controls neuronal life and contributes to disease pathogenesis of neurological disorders.

Featured Publications
Related Research Areas