CWRU Links
{{dept_full_name}}

Journal Club

Solomiia Boyko
Solomiia Boyko
Feb. 5, 2020 8:45 a.m. - 9:45 a.m.
School of Medicine E501
Mentor: Witold K. Surewicz, PhD

Go Back

JOURNAL CLUB

"Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension "

Zhou et al., 2019, Cell 177, 299–314;  https://doi.org/10.1016/j.cell.2019.02.013

Ben Zhou,1,2,3 Johannes Kreuzer,4 Caroline Kumsta,5 Lianfeng Wu,1,2,3 Kimberli J. Kamer,3,6 Lucydalila Cedillo,1,2,3 Yuyao Zhang,1,2,3 Sainan Li,1,2,3 Michael C. Kacergis,1,2,3 Christopher M. Webster,1,2,3 Geza Fejes-Toth,7
Aniko Naray-Fejes-Toth,7 Sudeshna Das,8 Malene Hansen,5 Wilhelm Haas,4 and Alexander A. Soukas1,2,3,9

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.